

Session ID: ENG445DK

Building Envelope

Assist. Professor **Dolaana KHOVALYG**

7 November 2024

Assist. Prof. Dolaana Khovalyg

Advancing human comfort studies and the design and control of occupant-centered thermal systems

PURPOSE:

- Promote the well-being and thermal comfort of building occupants
- Reduce operational energy for thermal conditioning in buildings

RESEARCH TOPICS:

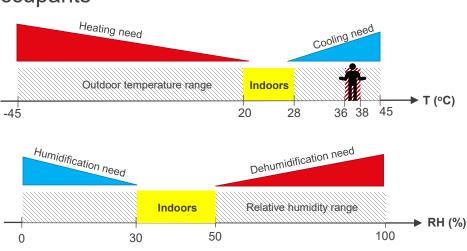
More details on the ICE activities online: https://www.epfl.ch/labs/ice/

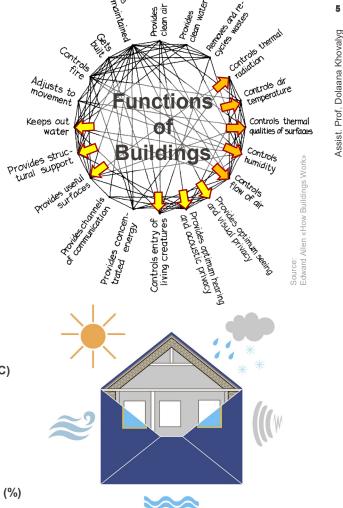
Course Information

Week	Date	Topic	Timing	Teacher	Project (AS, MF)
	07/11	Building envelope, thermal performance of building elements	45' x 2		Tutorial building envelope
9		Exercises	45'	DK	
	14/11	Heating and cooling demand in buildings	45' x 2		Free work
10		Exercises	45'	DK	
	21/11	Thermal systems for heating and their effect of human comfort	45' x 2		Free work
11		Exercises	45'	JY	
	28/11	Thermal systems for cooling and their effect of human comfort	45' x 2		Tutorial heating systems (emission systems)
12		Exercises	45'	DK	
	1	İ			

JY – Jaafar Younes, a postdoc from the ICE lab

Active Enclosure

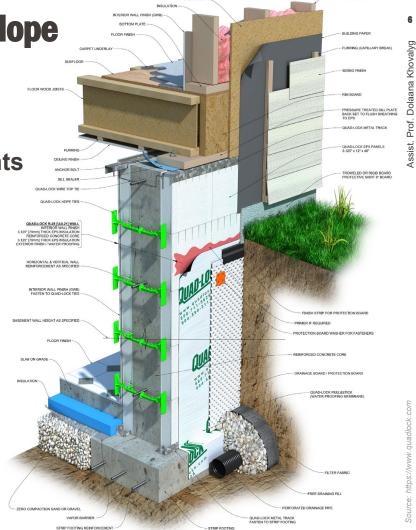

Source: Edward Allen «How Buildings Work» (2005)


CONTENT:

- Introduction to the Building Envelope
- Modes of Heat Transfer and their Properties
- Thermal Properties of the Building Elements:
 - Opaque Elements (walls, roofs)
 - Thermal Bridges (linear and point)
 - Transparent Elements (windows)

Building Envelope

- A physical barrier between the interior and the exterior
- The place where energy flow is interrupted (protects the house against energy loss and air and water infiltration)
- An enclosure that maintains stable temperature and humidity inside for comfort of occupants


NG-445 / BUILDING ENVELOP

Elements of the Building Envelope

Structural elements
 steel, concrete, timber, masonry, etc.

 Insulating (thermal control) elements glass wool, stone wool, EPS, PU/PIR, etc.

- Transparent elements windows, skylights
- Water, air, vapor control elements wraps, membranes, etc.
- Finishing interior finishing, external façade
- Connections
 joints, ties, battens, etc.

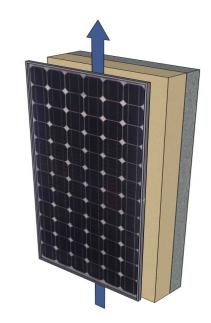
ENG-445 / BUILDING ENVELOPE

EPFL Building Façades

Opaque

(traditional façade)

without air gap or with air gap (vented, ventilated, enclosed)


Curtain Wall

(double-skin façade) reduced DSF, closed cavity façade, internal sunshield

BIPV

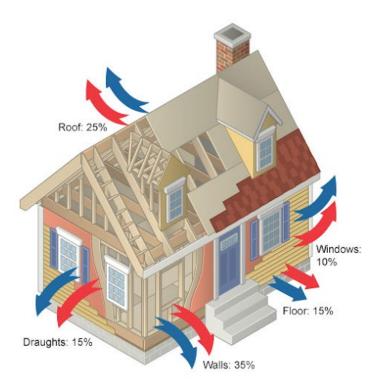
(active façade) opaque, translucent, transparent

ENG-445 / BUILDING ENVELOPE

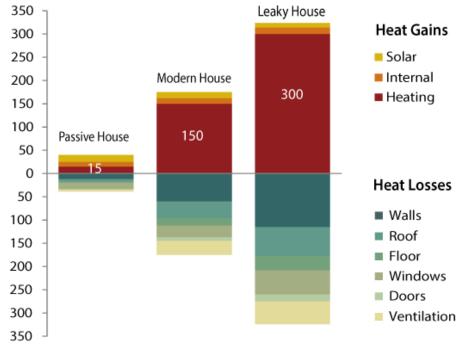
Source: www.swisspor.ch

ENG-445 / BUILDING ENVELOPE

EPFL Thermal Boundary


- A boundary where heat losses and heat gains are accounted and effectively controlled
- It fully wraps the indoor conditioned space, it often located over the building outer envelope.
- A well-thought design of the thermal boundary is a crucial factor for enhanced building performance in terms of comfort and energy use

Where to Insulate?


- 1. In unfinished attic spaces, insulate between and over the floor joists to seal off living spaces below
- 2. In **finished attic rooms** with or without dormer
- 3. All exterior walls
- 4. Floors above cold spaces, such as vented crawl spaces and unheated garages
- 5. Band joists
- 6. Replacement or storm windows, and caulk and seal around all the windows and door

Sources of Heat Losses in Buildings

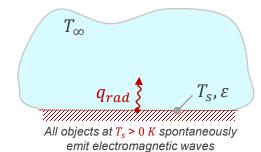
The Value of a Well Insulated Home

Average heating gains and losses by house type in kWh/m²a

Data: typical values for Northern European climates

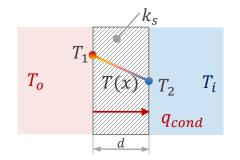
shrinkthatfootprint.com

Assist. Prof. Dolaana Khovalyg

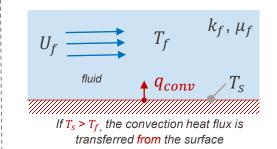

Active Mechanism Enclosure

CONTENT:

- Introduction to the Building Envelope
- Modes of Heat Transfer and their Properties
- Thermal Properties of the Building Elements:
 - Opaque Elements (walls, roofs)
 - Thermal Bridges (linear and point)
 - Transparent Elements (windows)


Radiation

energy transfer in the space by electromagnetic waves (no need in a medium)


Conduction

energy transfer from molecule to molecule due to the temperature gradient (in solids)

Convection

transport of energy due to **diffusion** (random molecular motion) and by **bulk motion** of the fluid

Heat flux $q(W/m^2)$

Stefan - Boltzmann's Law:

$$q_{rad} = \boldsymbol{\varepsilon} \cdot \boldsymbol{\sigma} \cdot T_S^4$$

$$\Delta q_{rad} = h_{rad} \cdot (T_S - T_{\infty})$$

Fourier's Law:

$$q_{cond} = \frac{k_s}{d} \cdot (T_1 - T_2)$$

Newton's Law of Cooling:

$$q_{conv} = h_c \cdot (T_s - T_f)$$

Temperature gradient should be positive since heat flows **spontaneously** from the **hot** to the cold medium according to the 2nd law of thermodynamics

Heat transfer coefficient h (W/m^2K)

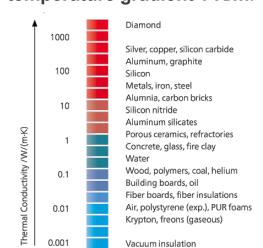
$$h_{rad} = \varepsilon \cdot \sigma \cdot (T_s^2 + T_\infty^2) \cdot (T_s + T_\infty)$$

$$h_{cond} = \frac{\kappa_s}{d}$$

 $h_{cond} = f(surface, fluid properties, velocity)$

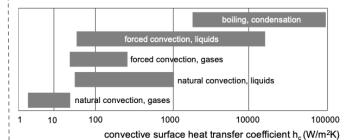
FNG-445 / BUILDING ENVELOP

Properties defining intensity of Heat Transfer


Radiation

Emissivity ε (-): effectiveness of the surface in emitting energy as thermal radiation, can have a value from **0** (shiny mirror) to 1 (blackbody). Per Kirchhoff's law, **emissivity** (ε) is equal to **absorptivity** (α) of the material

Metal Non-metal **Emissivity Emissivity** Concrete 0.02 - 0.40.93 - 0.96Bare aluminum (rough) ENG-445 / BUILDING ENVELOPE Gold 0.02 - 0.37Glass 0.76 - 0.94Copper 0.02 - 0.74Wood 0.8 - 0.95Lead 0.06-0.63 Carbon 0.96 0.03-0.61 0.98 Brass Human skin 0.7-0.95 Nickel 0.05-0.46 Paper Steel 0.07-0.85 Plastic 0.8 - 0.950.04-0.08 Rubber 0.86 - 0.94Silver 0.01-0.07 Water 0.67 - 0.96Zinc 0.02-0.28 Sand 0.76 - 0.9

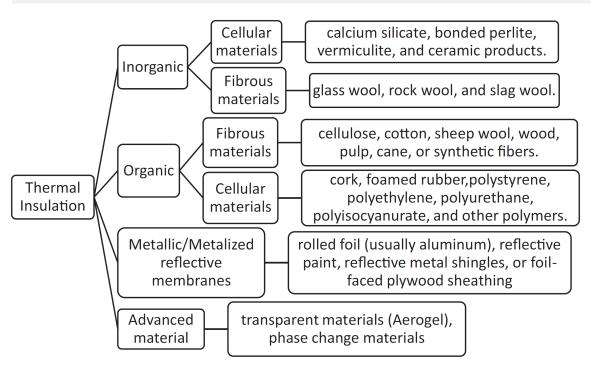

Conduction

Thermal Conductivity k or λ (W/m*K): amount of heat than can be **conducted** during 1 second through 1 m² of a homogeneous layer subjected material temperature gradient 1 K/m.

Convection

Convective transfer heat coefficient (W/m^2*K) : quantitative characteristic convective transfer heat between a fluid medium and the surface (wall) flowed over by the fluid. Varies for free and forced convection, internal or external flow, and laminar or turbulent flow.

(Thermal Conductivity at RT)

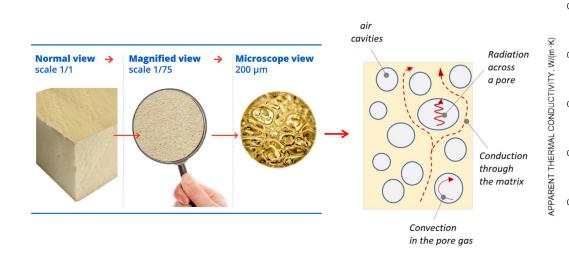

Prof. Dolaana Khovalyg

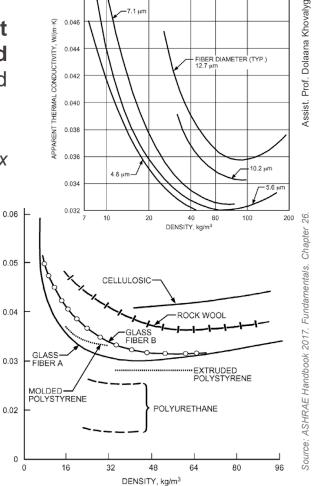
Assist. Prof. Dolaana Khovalyg

EPFL

Insulation Materials: Overview

Insulation materials restrict the flow of heat
 (which in turn reduces ability of building assemblies to dry out when wet)





Apparent Thermal Conductivity (W/m*K) – amount of heat than can be conducted during 1 second through 1 m² of a porous layer of material subjected to a gradient in temperature of 1 K/m.

captures the effect of convection and radiation in pores

 affected by structural parameters such as density, matrix type (fibrous or cellular), and thickness

orientation at 24°C mean temperature.

ENG-445 / BUILDING ENVELOPE

Active Mechanism Enclosure

CONTENT:

- Introduction to the Building Envelope
- Modes of Heat Transfer and their Properties
- Thermal Properties of the Building Elements:
 - Opaque Elements (walls, roofs)
 - Thermal Bridges (linear and point)
 - Transparent Elements (windows)

Thermal Resistance and Thermal Transmittance

• Rate of heat transfer per unit area driven by the temperature gradient, [W/m²]:

$$q = U \cdot (T_{hot} - T_{cold})$$

Thermal transmittance, Overall heat transfer coefficient, [W/m²K]

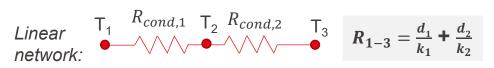
Temperature gradient, [K]

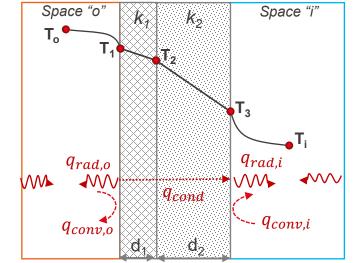
■ Thermal Transmittance (U-value, W/m²K) — heat transfer coefficient, an indicator of the efficiency to promote heat conduction by the material

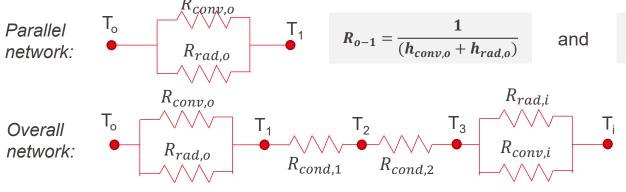
$$U = \frac{1}{R_{tot}}$$

■ Thermal Resistance (R-value, m²K/W) — the capacity of a material to *resist* heat flow

• Conduction:
$$q_{cond} = \frac{k}{d} \cdot (T_1 - T_2)$$
 $\Rightarrow R_{cond,i} = \frac{d_i}{k_i}$

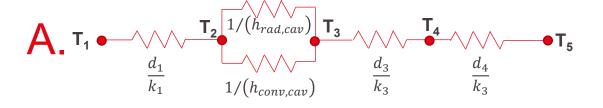

• Convection:
$$q_{conv} = h_{conv} (T_S - T_{\infty}) \Rightarrow R_{conv} = \frac{1}{h_{conv}}$$

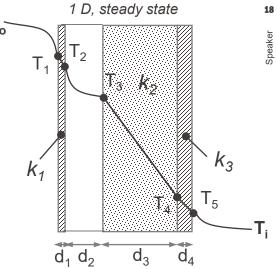

• Radiation:
$$q_{rad} = h_{rad} (T_S - T_{\infty}) \Rightarrow R_{rad} = \frac{1}{h_{rad}}$$

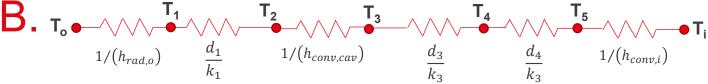

EPFL Network of Thermal Resistances

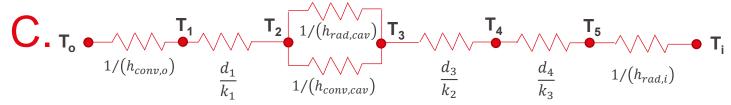
1 D, steady state

- Using the electrical circuit analogy, heat transfer problems can be analyzed using network of thermal resistances forming a thermal circuit
- Example for a simple composite wall:


$$R_{3-i} = \frac{1}{(h_{conv,i} + h_{rad,i})}$$


$$R_{tot} = \frac{1}{U} =$$


$$= R_{o-1} + R_{1-3} + R_{3-i}$$


EPFL Network of Thermal Resistances

Which of the following thermal circuits corresponds to the **overall thermal resistance** through **a composite wall** with **a sealed air cavity**?

D. NONE ABOVE

NAME EVENT / NAME PRESENTATION

Assist. Prof. Dolaana Khovalyg

Does the thermal transmittance of a building structure decrease <u>linearly</u> with thermal insulation thickness?

Please login:

<u>responseware.eu</u>

Session ID: ENG445DK

A. Yes

B. No

C. Not sure

Reflective Insulation

- Usually aluminum foil, which is applied to one or both sides of a number of substrate materials (kraft paper, plastic films, cardboard, etc.)
- Reduces radiant heat transfer using surfaces having high reflectance (low emissivity = low absorptivity) for long wave radiation

Horizontal gap (e.g., roof)

Vertical gap (e.g., wall)

0.65

1.77

0.5" (1.27 cm) 0.75" (1.905 cm 1.5" (3.81 cm)

3.5" (8.89 cm)

0.18

			_
NO reflective insulation	WITH reflective insulation	NO reflective insulation	WITH reflective insulation
0.14	0.44	0.14	0.43
0.15	0.63	0.15	0.62
0.17	1.07	0.15	0.70

0.15

ENG-445 / BUILDING ENVELO

Building Envelope Performance: Standards

Standard	Title
ISO 6946	Building components and building elements – Thermal resistance and thermal transmittance – Calculation methods
ISO 7345	Thermal Insulation – Physical quantities and definitions
ISO 10211	Thermal bridges in building construction – Heat flows and surface temperatures – Detailed calculations
ISO 10456	Building materials and products – Hygrothermal properties – Tabuated design values and procedures for determining declared and designed thermal values
ISO 14683	Thermal bridges in building construction - Linear thermal transmittance - Simplified methods and default values
SIA 2024	Données d'utilisation des locaux pour l'énergie et les installations du bâtiment
SIA 180	Protection thermique, protection contre l'humidité et climat intérieur dans les bâtiments
SIA 380/1	Besoins de chaleur pour le chauffage

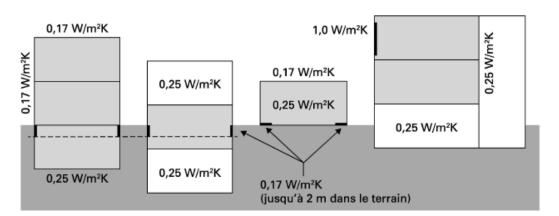
Assist. Prof. Dolaana Khovalyg

EPFL

Requirements per SIA standards

Maximum permitted U-values (SIA 180)

Building element	Envelope adjacent to exterior [W/m²K]	Envelope element adjacent to unheated premises [W/m²K]
Roof	0.4	0.6
Wall	0.4	0.6
Floor	0.4	0.6
Windows, door	2.4	2.4
Blind casing	2	2


 Limiting values of U-value for renovated and new buildings (indoor temperature 20°C) (SIA 380)

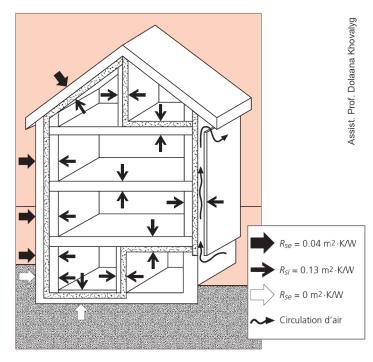
Building element	•	•		nvelope elements adjacent to unheated premises [W/m²K]	
	renovation	new	renovation	new	
Opaque elements	0.25	0.17	0.28	0.25	
Windows	1.0	1.0	1.3	1.3	
Door	1.2	1.2	1.5	1.5	
Blind casing	0.5	0.5	0.5	0.5	

Illustration for new constructions:

*Standardized boundary conditions:

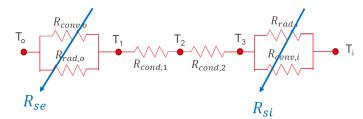
Indoor: +20°C
Outdoor: -10°C

Surface Thermal Resistance


Design surface resistance (ISO 6946):

Values of *external* and *internal* **film surface resistance** depending on heat flow direction:

Surface	Direction of heat flow		
resistance	Upwards	Horizontal	Downwards
(m ² K/W)	↑	\longrightarrow	+
Interior R _{si}	0.1	0.13	0.17
Exterior R _{se}	0.04	0.04	0.04


Design values are considered for the following conditions:

- internal surface resistance is calculated for $\varepsilon = 0.9$, h evaluated at 20°C
- external surface resistance is calculated for $\varepsilon = 0.9$, h evaluated at -10°C, v = 4 m/s

If surface resistances are known, the example for a composite wall on slide 19 simplifies as follows:

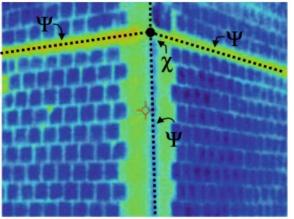
$$U_{tot} = \frac{1}{R_{tot}} = \frac{1}{R_{se} + R_{1-3} + R_{si}}$$

Assist. Prof. Dolaana Khovalyg

Active Mechanism Enclosure

CONTENT:

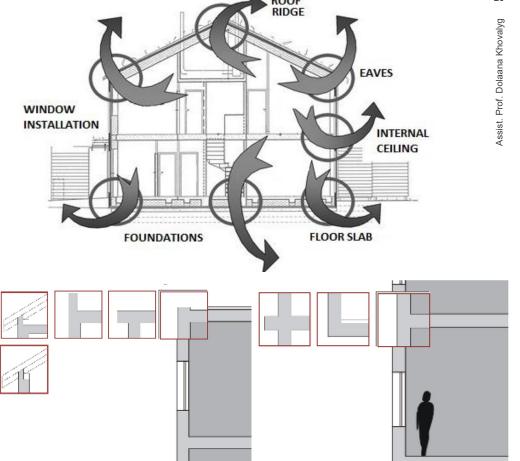
- Introduction to the Building Envelope
- Modes of Heat Transfer and their Properties
- Thermal Properties of the Building Elements:
 - Opaque Elements (walls, roofs)
 - Thermal Bridges (linear and point)
 - Transparent Elements (windows)


Opaque Building Elements: Transmission Heat Flow

Total <u>specific</u> heat flux through the opaque elements of the building envelope [W/K]:

$$\mathbf{H} = \sum_{i} A_{i} \cdot \mathbf{U}_{i} + \sum_{j} l_{j} \cdot \mathbf{\psi}_{j} + \sum_{k} \mathbf{\chi}_{k}$$
1-dimentional 2-dimentional 3-dimentional

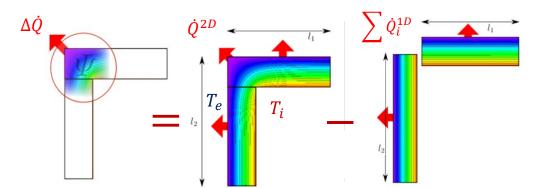
- o A_i [m²] area of element i of the building envelope
- o U_i [W/(m²·K)] thermal transmittance of element *i*th of the building envelope
- o l_i [m] length of the j-th linear thermal bridge
- ψ_j [W/(m·K)] linear thermal transmittance of linear *j-th* thermal bridge
- \circ χ_k [W/K] point thermal transmittance of the *k-th* point thermal bridge

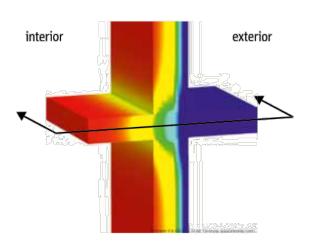

EPFL Thermal Bridges

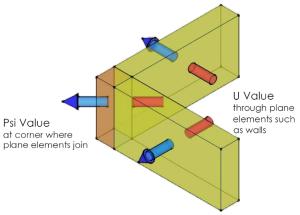
Thermal Bridge

(cold bridge, heat bridge) -

a localized area of the building envelope where the heat flow is different (usually increased) in comparison with adjacent areas if there is a temperature gradient between the inside and the outside

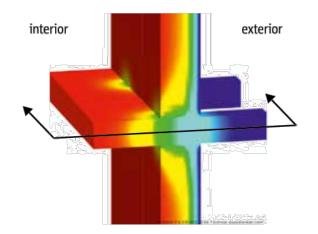

The heat leak occur due to the higher thermal conductivity of the area compared to surrounding materials creating a path of least resistance for heat transfer.

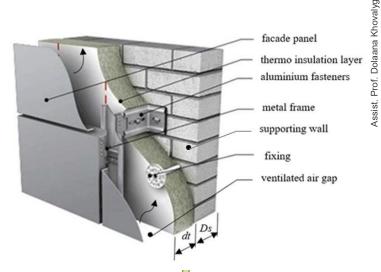


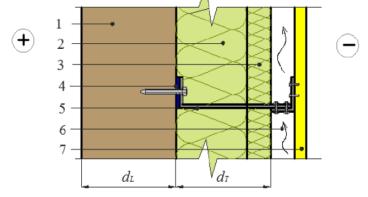

Assist. Prof. Dolaana Khovalyg

EPFL Linear Thermal Bridge (2D)

- **Linear Thermal Bridge** emerges at joints over the length of building components
- Linear thermal transmittance, Psi-value $[\psi, W/m^*K]$ an indicator of the *heat loss* across a given junction between the external wall and another element for every linear 1 m of that junction and 1 K difference between inside and outside.
- The thermal transmittance due to the thermal bridge is the difference between the thermally interrupted and the uninterrupted components






EPFL

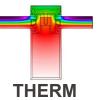
Point Thermal Bridge (3D)

- Point Thermal Bridge emerges when a building envelope is interrupted in a point (e.g., by a fastener)
- Point thermal transmittance, Ksi-value [χ, W/K] –
 an indicator of the heat loss across a given point
 between the external wall and another element at
 1 K difference between inside and outside.

EPFL

Thermal Bridges: Standardized Requirements

Limiting values per SIA 380/1 of thermal transmittance of thermal bridges in new buildings:


	Linear Thermal Bridges	ψ (W/m*K)
Type 1	Protruding parts (balconies eaves)	0.30
Type 2	interruption of the insulating envelope by walls, floors and ceilings	0.20
Type 3	Interruption of the insulating envelope by the horizontal or vertical edges	0.20
Type 5	Window still	0.15
	Point Thermal Bridges	χ (W/K)
Type 6	Point element passing through the thermal insulation	0.30

Methods to calculate thermal bridges

Method	Accuracy	Considerations
Numerical calculations	±5%	o Description elaborated in ISO 10211:2017
Thermal bridge catalogues	±20%	 Have essentially fixed parameters (e.g. fixed dimensions and materials) Less flexible than calculations Do not exactly match the actual detail being considered
Manual calculations	±20%	 Performed by simple computer software Apply only to a specific type of thermal bridge (e.g. constructions with sheet metal) It can be very inaccurate outside of the range of the specified range of application
Default values	0 % to 50%	 Calculated for parameters representing worst-case situations Based on two-dimensional numerical modelling in accordance to ISO 10211:2017 To be used in the absence of more specific data for the thermal bridges concerned

and more

Assist. Prof. Dolaana Khovalyg

How much could be the contribution of thermal bridges in the overall thermal balance of <u>new</u> buildings?

Please login:

responseware.eu

Session ID: ENG445DK

A. < 1%

B. 1-5%

C. 5-10%

D. 10-20%

E. >20%

Assist. Prof. Dolaana Khovalyg

Active Mechanism Enclosure

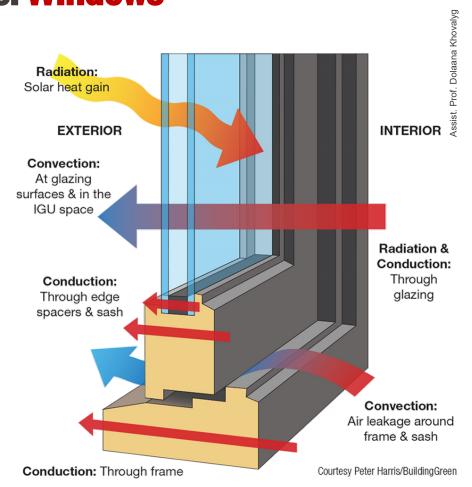
Source: Edward Allen «How Buildings Work» (2005)

CONTENT:

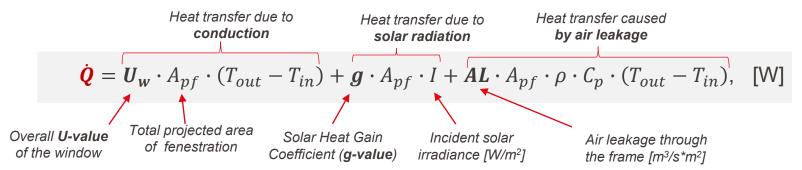
- Introduction to the Building Envelope
- Modes of Heat Transfer and their Properties
- Thermal Properties of the Building Elements:
 - Opaque Elements (walls, roofs)
 - Thermal Bridges (linear and point)
 - Transparent Elements (windows)

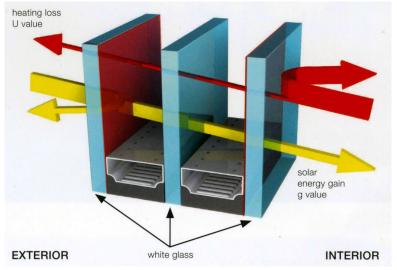
EPFL Heat Transfer in Buildings: Windows

Radiation:


- Short-wave solar radiation (< 2500 nm) incident on the fenestration
- Long-waver radiative heat exchange (> 2500 nm) between fenestration and its surroundings

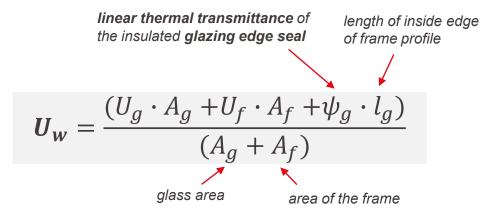
Convection:

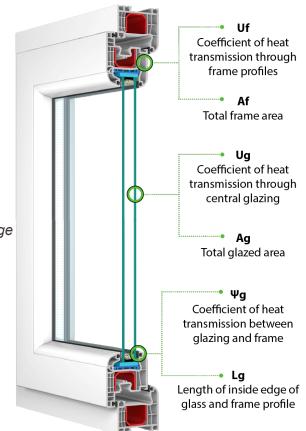

- At the outward surface of the outer pane
- At the inward surface of the inner pane
- In the inter-pane space
- Air leakage around frame and edges (infiltration)


Conduction:

 Through the frame, glass, edge spaces and sash

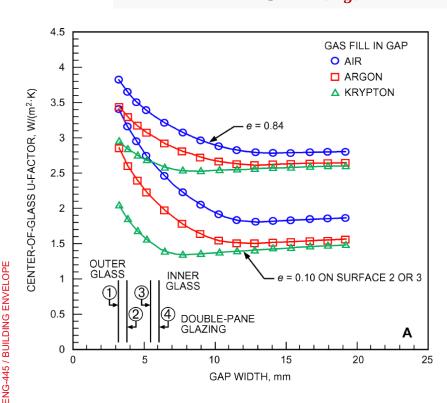
EPFL Windows: Instantaneous Energy Flow

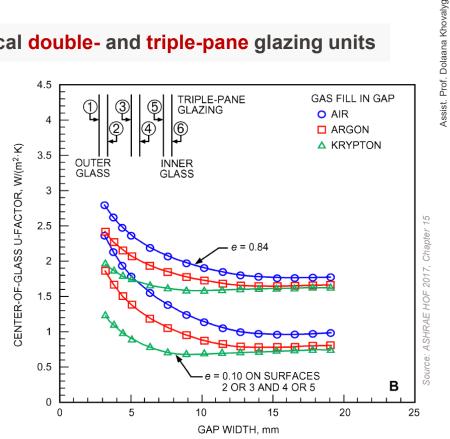



Source: ASHRAE HOF 2017, Chapter 15

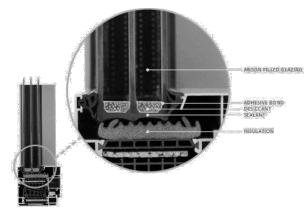
Thermal Transmittance of Windows

Factors defining overall U-value of the window (U_w) :


- U-value of the **glazing** (U_g)
- U-value of the **frame** (U_f)
- Thermal bridges $(l_g \text{ and } \Psi_g)$



EPFL Thermal Transmittance of Windows


U-factor of the glass (U_g) for vertical double- and triple-pane glazing units

Thermal Transmittance: Standardized values

Linear thermal transmittance ψ_g value depends on the **frame type** (e.g., material and presence of a thermal break) and **glazing type** (e.g., gas-filling).

Thermal transmittance of the frame U_f is the highest for frames with metal core and decreases with the number of hollow chambers.

	Linear thermal transmittance for different types of glazing $\psi_{\rm g}$		
Frame type	Double or triple glazing uncoated glass air- or gas-filled	Double ^a or triple ^b glazing low-emissivity glass air- or gas-filled	
Wood or PVC	0,06	0,08	
Metal with a thermal break	0,08	0,11	
Metal without a thermal break	0,02	0,05	
a One pane coated for double glazed.			
b Two panes coated for triple gla	zed.	ISO 10077-1:2017	

Table F.1 — Thermal transmittances for plastic frames with metal reinforcements

Polyurethane $ \begin{array}{c} \text{with metal core} \\ \text{thickness of PUR} \geq 5 \text{ mm} \\ \\ \text{two hollow chambers} \\ \\ \text{external} \end{array} \begin{array}{c} \text{internal} \\ \\ \text{2,2} \\ \\ \\ \text{three hollow chambers} \\ \\ \text{external} \end{array} \begin{array}{c} \text{internal} \\ \\ \text{2,0} \\ \\ \end{array} $	Frame material	Frame type	U_{f} W/(m²⋅K)
PVC-hollow profiles ^a external internal 2,2 three hollow chambers 2,0	Polyurethane		2,8
three hollow chambers	DVC hallowwyofiloga		2,2
	PVC-nollow profiles ^a		2,0

ENG-445 / BUILDING ENVELOPE

Which window type would have the lowest U_w value?

Please login:

responseware.eu

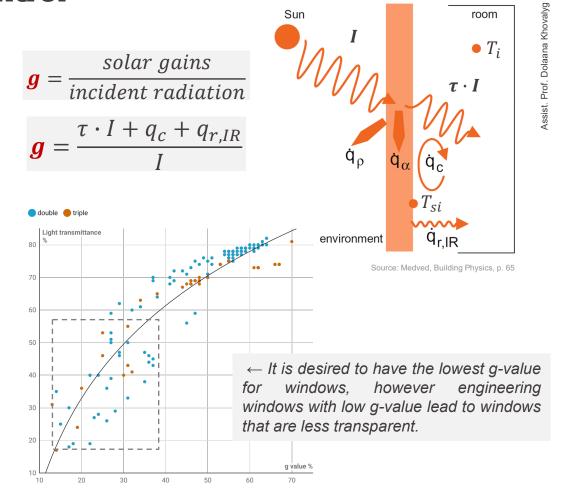
Session ID: ENG445DK

A double-grazed window with a wooden frame ($U_g = 1.1 \text{ W/m}^2\text{K}$, $U_f = 1.3 \text{ W/m}^2\text{K}$, identical for 3 options), the total projected area of each window is the same.

- A. Option A
- B. Option B
- C. Option C

(A)

(B)

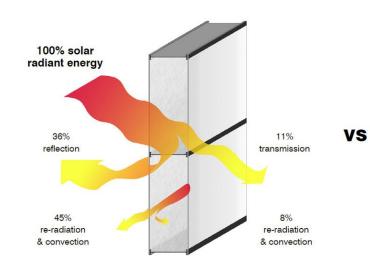

(C)

EPFL Solar Heat Gain Control

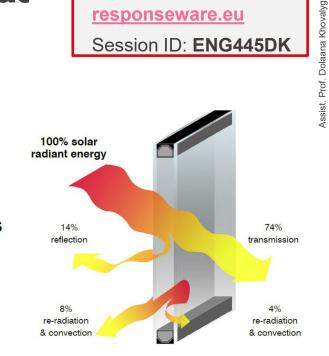
Solar Heat Gain Coefficient (SHGC) or g-value –

the percent of solar energy incident on the glass that is indoors transferred both directly and indirectly through the glass.

The *direct* gain portion is the solar energy transmittance. while the indirect is the fraction of solar energy *incident* on the glass (+ blind) that is **absorbed** and **re**radiated or *transmitted* through convection indoors.



Which window has lower solar heat gain coefficient (g-value)?


Please login:

responseware.eu

Session ID: ENG445DK

1" Clear Insulated Glass Unit (IGU)

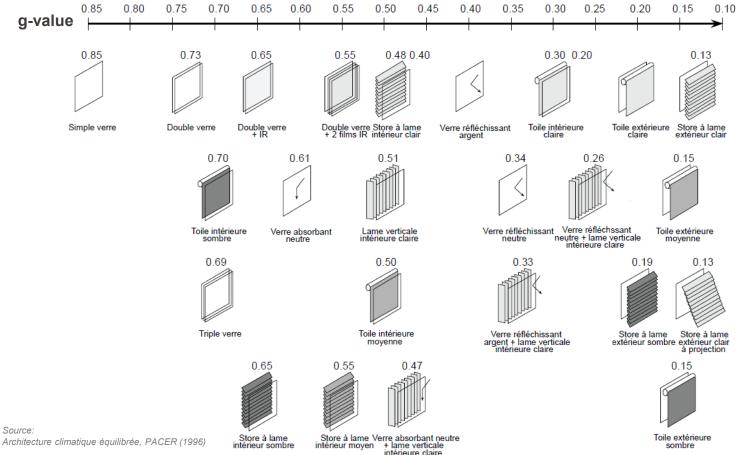
Option A

Option B

Where is it better to place window blinds to reduce solar heat gains?

Please login:

responseware.eu


Session ID: ENG445DK

A. Indoors

B. Outdoors

C. Inside the window panes

EPFL Comparison of g and g_{tot}: Effect of Blinds

Performance of Transparent Elements: Standards

Code	Title
ISO 15099:2003	Thermal performance of windows, doors and shading devices Detailed calculations
ISO 10077-1:2017	Thermal performance of windows, doors and shutters Calculation of thermal transmittance - Part 1: <i>General</i>
ISO 10077-2:2017	Thermal performance of windows, doors and shutters Calculation of thermal transmittance - Part 2: <i>Numerical method for frames</i>
ISO 19467:2017	Thermal performance of windows and doors - Determination of solar heat gain coefficient using solar simulator

Measures to reduce heat transfer: Which measures are the most efficient for windows?

- A. Increase number of panes (e.g., triple pane)
- Addition of the low-e or tined coatings
- C. Evacuated interpane space
- D. Interpane gas fills (argon, krypton)
- E. Low conductivity spacers

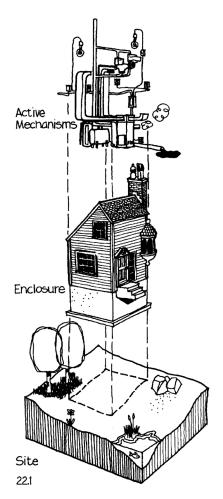
Please login:

responseware.eu

Session ID: ENG445DK

Assist. Prof. Dolaana Khovalyg

Main Concepts of this Lecture


- Definition of the thermal boundary
- Opaque building elements
 - Heat transfer modes $(q_{cond}, q_{conv}, q_{rad})$
 - Concepts of **R** -value and **U**-value
 - Network of thermal resistances (R_{tot} and U_{tot})
 - Permitted and limiting *U*-values according to standards
 - Film surface resistance (internal R_{si} and external R_{se})
 - o Thermal bridges, the difference between U, ψ , and χ
 - Measures to reduce the heat transfer through walls

Transparent building elements

- Heat transfer modes
- Overall U-value of the window (U_w) , contributions of U_g , U_f , ψ_g
- Solar heat gain coefficient (g) of glasses
- Linear thermal transmittance (ψ_g) of frames
- Measures to reduce the heat transfer through windows

EPFL

Source: Edward Allen «How Buildings Work» (2005)

Thank you for your attention!

Assist. Prof.
Dolaana KHOVALYG
dolaana.khovalyg@epfl.ch

https://www.epfl.ch/labs/ice/